
4 From Euclid to Fermat to Euler to Gauss and to RSA algorithm

4.1 The fundamental theorem of arithmetic

Here I will give a detailed proof of the fundamental theorem of arithmetic noting that there is a very
interesting discussion on why this theorem is not “obvious” in the Internet1. Indeed, it is quite naive
to expect that the products like 1357× 4183 and 1081× 5251 are not the same only because all four
numbers in these products are prime. Another point about this theorem is that in its proof it is very
easy unconsciously to assume it itself thus falling in a circular trap. Finally, on many occasions various
proofs of this theorem are based on the so-called Euclid’s lemma (see, e.g., the textbook) but here I
do not require this lemma in my proof and eventually prove Euclid’s lemma using the fundamental
theorem of arithmetic.

Let m,n ∈ N be two natural numbers. I say that m divides n, denoted m | n, if there is k ∈ N
such that n = km. A number p ∈ N is called prime if p ≥ 2 and it is divided by only 1 and itself.
Here are a few first prime numbers: 2, 3, 5, 7, 11, 13, 17, 23, 29, . . . If a number is not prime and different
from 1 it is called composite. In other words m ∈ N is composite if and only if m = ab, a, b ∈ N and
2 ≤ a ≤ b < m.

Theorem 4.1 (Fundamental theorem of arithmetic). Any natural number n ≥ 2 can be uniquely
written as the product of prime numbers:

n = pα1
1 · pα2

2 · . . . · pαk
k , 2 ≤ p1 < p2 < . . . < pk, α1, α2, . . . , αk ≥ 1,

where pj are prime numbers and αj are natural.

Remark 4.2. Note that 1 is not a prime number, and one of the main reasons for it is to have the
uniqueness of factoring of any natural number into product of primes. Sometime it is convenient to
define that 1 is equal to the empty product of prime numbers, thus removing the condition n ≥ 2 in
the theorem.

I will split the proof of Theorem 4.1 into three steps.

Lemma 4.3 (Existence). Any natural n ≥ 2 can be written as a product of primes.

Proof. (By strong induction) The statement is true for the base step n = 2. Assume that it is true for
any 2 ≤ k ≤ n− 1 and consider n ∈ N. If it is prime we are done. If it is not prime, it is composite,
or a product n = ab of two natural 2 ≤ a ≤ b < n, for which the induction assumption is true, which
finishes the proof. �

Remark 4.4. Note that I also proved a somewhat weaker statement that any natural number (other
than 1) is either prime or divisible by prime.

The next step will be somewhat auxiliary, the main reason I separate it is the fact that for many
students this statement seems so obvious that they do not realize that it still requires a proof.
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Lemma 4.5. If n = p1p2 . . . pk (here I do not assume that all pj are distinct, the only assumption is
that p1 ≤ p2 ≤ . . . ≤ pk) is the unique factoring of n into product of primes and prime p divides n
then p = pj for at least one index 1 ≤ j ≤ k.

Proof. (By contradiction) Assume that p | n and p ̸= pj for all j. Since n = pa = pq1 . . . ql by Lemma
4.3 for some primes qi I found a different factoring of n into product of primes, which contradicts the
assumption that such factoring is unique. �

Lemma 4.6 (Uniqueness of prime factorization). The prime factorization

n = p1p2 . . . pk, 2 ≤ p1 ≤ p2 ≤ . . . ≤ pk

is unique.

Proof. (By contradiction) It is clear that at least for the first several natural numbers this factorization
is unique. Assume that there are natural numbers for which the prime factorization is not unique.
Let n ∈ N be the smallest such number (which must exist by the well-ordering principle). That is,

n = p1p2 . . . pk = q1q2 . . . ql,

where (and below) all the factors are arranged in nondecreasing order. First I note that pi ̸= qj for
all possible i and j, because otherwise I would have found, after canceling identical factors, a smaller
natural number that would have non unique prime factorization. Hence I can assume that p1 < q1
(otherwise I can switch the notation). I have that n ≥ p21 (since there must be at least two factors in
the product of primes and p2 ≥ p1) and hence n > q21. Together this implies that n2 > p21q

2
1 or

n > p1q1.

Consider now the natural number n−p1q1. This number is smaller than n (and hence has a unique
prime factorization) and is divisible by construction by both p1 and q1. By Lemma 4.5 natural number
n− p1q1 has the unique prime factorization p1q1a, where a is a product of some primes. This implies
that

n = p1p2 . . . pk = p1q1(1 + a),

and by canceling p1 and recalling that q1 ̸= pi for any i I found two different prime factorizations
for the natural number p2 . . . pk = q1(1 + a), which is smaller than n. Since n by assumption was
the smallest such number I reached a contradiction thus finishing the proofs of both the lemma and
Theorem 4.1. �

Euclid himself did not prove Theorem 4.1 in his Elements. He went, however, very close to the
same exactly statement. The key fact, which is proved in Elements, and can be used to show the
uniqueness of prime factorization, is Proposition 30 in Book VII.

Corollary 4.7 (Euclid’s lemma). If p ∈ N is prime and p | ab for some a, b ∈ N then either p | a or
p | b.

Proof. By the fundamental theorem of arithmetic, ab is uniquely factored into product of primes
p1 . . . pkq1 . . . ql, where a = p1 . . . pk and b = q1 . . . ql. By the same theorem (Lemma 4.5), p must
coincide with either one of pi or qj , and hence p divides either a or b. �
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Exercise 1. Prove a more general variant of Euclid’s lemma: If a | bc, and a and b are relatively
prime then a | c.

Exercise 2. Give an example of a, b, c such that c | ab and at the same time c - a and c - b.

Exercise 3.
There was a young lady named Chris

Who, when asked her age, answered this
Two-thirds of its square

Is a cube I declare
Now what was the age of the miss?

Exercise 4. Assuming that Euclid’s lemma is true, give a different proof of the uniqueness of prime
factorization.

Exercise 5. Prove that
√
p is irrational for any prime p.

To finish this short section I would like to mention one common misconception, which can be found
in many number theory textbooks2. Euclid in his Elements gave a proof of the fact that there are
infinitely many prime numbers. In many books it is claimed that he did this by contradiction, which
is incorrect (to be fully honest he did use a small bit of contradiction inside his proof, but he never
started his proof with the sentence like “Suppose that there are finitely many primes.”)

Here are Euclid’s arguments using modern notation.

Theorem 4.8. There are infinitely many primes.

Proof. Let a, b, c be prime numbers. Consider the number

abc+ 1.

This number is either prime (which is different from a, b, c) or divisible by prime (Lemma 4.3). In
the latter case this prime cannot be a, b, c otherwise it would mean that a, b, or c divide 1, which is
absurd. In either case we found another prime number different from a, b, c, call it d. Now we can
repeat the process starting with a, b, c, d. In other words, given k prime numbers it is always possible
to find a k + 1-st prime number, which finishes the proof. �

4.2 Congruences and divisibility rules

4.3 Fermat’s little and Euler’s theorems

Now that we have some experience working with congruences, we can prove Fermat’s little theorem
and its generalization Euler’s theorem. Several times in the proofs below I will need a basic fact when
one can cancel factors in congruences, so let me start with it.

Lemma 4.9. If integers c and n are relatively prime then the congruence

ac ≡ bc (mod n)

implies
a ≡ b (mod n).

2See Hardy, M., & Woodgold, C. (2009). Prime simplicity. The Mathematical Intelligencer, 31, 44–52, for further
details.
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Proof. By the definition of congruences we have that

n | (a− b)c

and by the assumptions n and c are relatively prime. Hence by Euclid’s lemma n | (a− b) or

a ≡ b (mod n)

as required. �

Theorem 4.10 (Fermat’s little theorem). Let p be a prime number, and a ∈ N be relatively prime
with p. Then

ap−1 ≡ 1 (mod p).

Remark 4.11. Often Fermat’s little theorem is formulated as ap ≡ a (mod p) for any natural a.
Think out why this does not add much to the statement I have given.

Proof of Theorem 4.10. Consider p− 1 numbers a, 2a, . . . , (p− 1)a modulo p:

a ≡ r1 (mod p),

2a ≡ r2 (mod p),

...

(p− 1)a ≡ rp−1 (mod p).

Since a and p are relatively prime by the assumption, 1, . . . , p−1 are relatively prime with p because p
is prime, then none of rj ̸= 0. Moreover, ri ̸= rj for any 1 ≤ i, j ≤ p− 1, i ̸= j. Indeed, if it happened
that ri = rj = r, it would mean ia ≡ ja (mod p), or, by Lemma 4.9, i ≡ j (mod p) or simply i = j,
which is impossible. Therefore we conclude that {r1, r2, . . . , rp−1} = {1, 2, . . . , p − 1} (possibly in a
different order, but this is not important for us).

Multiplying all the lines above yields

(p− 1)!ap−1 ≡ (p− 1)! (mod p),

or, invoking Lemma 4.9 again,
ap−1 ≡ 1 (mod p),

because (p− 1)! and p are relatively prime. The theorem has been proven. �

Euler’s theorem replaces p in Theorem 4.10 with an arbitrary natural n. For the exact statement
I will need a definition of Euler’s φ-function, which is the number of integers 1 ≤ j < n which are
relatively prime with n. Convince yourself that, e.g., φ(6) = 2, φ(9) = 6, and φ(p) = p − 1 for any
prime p.

Theorem 4.12 (Euler’s theorem). For relatively prime a and n

aφ(n) ≡ 1 (mod n).
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Proof. Let {α1 = 1, α2, . . . , αφ(n)} be φ(n) numbers that are relatively prime with n. Consider

α1a ≡ r1 (mod n),

α2a ≡ r2 (mod n),

...

αφ(n)a ≡ rφ(n) (mod n).

For exactly the same reasons as in the proof of Fermat’s little theorem, rj ̸= 0 and ri ̸= rj if i ̸= j.
Moreover, I claim that rj and n must be relatively prime. Looking for a contradiction assume not, i.e.,
assume n and rj have a common factor for some j. Since αja ≡ rj (mod n) means that αja− r = kn
for some integer k, this yields αja = kn+ r. If n and r have a common factor then kn+ r is divisible
by this factor, and hence, by the fundamental theorem of arithmetic, αja also must be divisible by
this factor, which is impossible since both a and αj are relatively prime with n. Therefore we conclude
that {r1, r2, . . . , rφ(n)} = {α1, α2, . . . , αφ(n)}.

Multiplying all the lines above yields

α1 . . . αφ(n)a
φ(n) ≡ α1 . . . αφ(n) (mod n),

or, invoking Lemma 4.9,
aφ(n) ≡ 1 (mod n),

because all αj and n are relatively prime. The theorem has been proven. �

4.4 RSA algorithm

Now we will see a little bit of magic of the discussed number theory (there is much more to the story,
see the literature review at the end of this lecture).

Assume that Bob needs to send Alice some secret information I. To do it securely, this information
must be encrypted so that no one could read this information other than Alice. This can be done, for
instance, if both Alice and Bob exchanged some (hopefully strong) cypher earlier, and only they have
access to this cypher (this is called a symmetric cryptosystem). The weakness of course is that if the
cypher is broken (or stolen) all the future correspondence will be available to eavesdropper. In the
seventies of the twentieth century it was realized that there is another dramatically different approach
to safe information transmission. Namely, it was suggested that an asymmetric cryptosystem with a
public key would be used. Pretty much it means that the person, who is about to receive the message
I, shares some public information, which includes the public key α, which is used to encipher the
information I, but cannot be used to decipher the message (this is why it is assymetric).

The first actual implementation of this idea was done by Ron Rivest, Adi Shamir, and Leonard
Adleman in 19773. Here is how it works.

Alice takes two prime numbers p, q and computes n = pq. The algorithm is based on the fact that
if p and q are sufficiently large, knowing n will not allow to determine p, q in a reasonable time. Yet
Alice knows both p, q and hence knows that φ(n) = (p− 1)(q − 1) = N .

Exercise 6. Prove that for primes p and q

φ(pq) = (p− 1)(q − 1).

3See Gardner, M. (1977). Mathematical games. Scientific American, August, 120–124.
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Further, she chooses natural α, which should be relatively prime with N , and shares publicly α
and n.

At this point anyone can use this public information to send secret messages to Alice, including
Bob. He computes

Iα ≡ J (mod n)

and sends the encrypted message J to Alice.
In addition to α Alice computes β (the private key), that must satisfy

αβ ≡ 1 (mod N),

i.e., αβ = kN + 1. Note that this is just a Diophantine’s equation for the unknowns β and k, which
can always be solved for relatively prime α and N by the extended Euclid’s algorithm.

Finally, using Euler’s theorem 4.12, Alice computes

Jβ ≡ (Iα)β ≡ IkN+1 ≡ (IN )kI ≡ (Iφ(n))kI ≡ [by Theorem 4.12] ≡ 1 · I ≡ I (mod n),

and hence recovers the original message I!

4.5 Literature review
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